4 s'pektiﬁm

i

PROACTIVE SECURITY:

Transforming Vulnheraoltity
Management with Runtime
Intelligence

spektion

Executive Summary

The cybersecurity industry faces a critical inflection point:
vulnerability management practices remain stubbornly static
while the software landscape grows increasingly dynamic. This
white paper examines the fundamental disconnect in current
approaches and presents a transformative solution.

Today's vulnerability management strategies rely almost
exclusively on CVE publications, CVSS scoring, and other static
assessment techniques built mostly on CVE data. This approach
creates a perpetual cycle of reaction that fails to effectively secure
organizational environments for three key reasons:

« Static Solutions to Dynamic Problems: Traditional vulnerability
management applies fixed, point-in-time assessments to
software that is constantly evolving and behaving differently
across environments.

« Over-reliance on CVE Data: Organizations continue to base
security decisions primarily on CVE publications while missing
critical new data sources that could drive more effective
insights and proactive security measures.

« Scaling Crisis: With the accelerating pace of software
development—further amplified by generative Al and modern
development practices—CVE-based vulnerability management
processes are becoming increasingly inadequate to secure
organizations effectively.

As the volume of software deployed within organizations continues
to grow exponentially, the gap between vulnerability discovery
and mitigation widens. Software approval processes suffer from
similar limitations, with organizations relying heavily on vendor
questionnaires and point-in-time assessments that provide little
insight into actual application behavior and associated risks.

Spektion offers a fundamentally different approach through
dynamic runtime intelligence. By monitoring application behavior
in real-time and establishing behavioral baselines, organizations
gain:

- Visibility into software functionality before vulnerabilities are
published

- The ability to detect suspicious behavior patterns across all installed applications
- Context-aware vulnerability prioritization based on actual observed behaviors

- Enhanced incident response capabilities through behavioral anomaly detection

« More effective software approval processes grounded in observed functionality

The white paper demonstrates how this approach transforms the entire security lifecycle, from
initial software assessment during the approval process to ongoing monitoring and vulnerability
management. Through real-world examples, we illustrate how dynamic behavioral analysis reveals
critical risks in commonly used applications that would remain undetected through traditional
methods.

By shifting from reactive vulnerability management to proactive behavioral monitoring, organizations
can escape the endless cycle of “vulnerability whack-a-mole” and develop security programs that
can scale with the rapidly expanding software ecosystem being accelerated by Al and modern
development practices.

TRANSFORMING VULNERABILITY MANAGEMENT:

Beyond, CVE-centric Security

The current approach to vulnerability assessment relies heavily on static data gathering techniques
that fail to consider software functionality. Security programs depend on Common Vulnerabilities and
Exposures (CVE) announcements to implement mitigations or make risk decisions for applications
within their organizations. This dependence on unpredictable, uncontrollable CVE publications
creates an expanding attack surface and increases the risk of compromise.

Most existing solutions remain reactive, inefficient, and ineffective because they rely on static CVE
data or previously defined vulnerabilities. As generative Al dramatically accelerates both commercial
and internal software development, the CVE discovery and disclosure ecosystem will increasingly
struggle to keep pace. This problem is particularly acute for the growing volume of Al-enabled
homegrown applications being built and deployed within organizations, which typically fall outside
traditional CVE monitoring frameworks altogether.

This CVE-centric approach cannot lead to a truly hardened environment, as it fails to provide
security teams with the comprehensive data needed for success in today’s rapidly evolving software
landscape.

For teams involved in onboarding, deploying, and securing software to succeed, runtime data that
monitors installed applications and details their functionality based on actual behavior—not just
CVE vulnerability lists—is essential.

This report examines the limitations of current CVE-driven attack surface hardening methodologies
and presents solutions for leveraging dynamic telemetry to improve the environment’s overall risk
posture.

BEYOND STATIC METRICS:

The Flawed Foundations of
Vulherability Prioritization

The primary factors security programs consider when assessing vulnerability
relevance include:

VENDOR/APPLICATION

Is this product
used within the
organization?

The Exploit Prediction

| @ I Scoring System percentage:

What is the likelihood of
exploitation?

CVSS SCORE

Does the score exceed the
organization’s threshold of

concern (e.g., 7.5+)?

CISA KEV

CISA Known Exploited
Q Vulnerability Status:
Is the vulnerability listed

in official exploitation
databases?

ATTACK VECTOR

SBOM & VEX

ili -
o inerably o 8 D Software Bill of Materials (SBOM) &
neFt)work or requires ~— Vulnerability Exploitability eXchange
local 30Cess? ./ \. (VEX): Do these resources provide

additional context for assessment?

At its core, the publication of a CVE requires prior
discovery and escalation. Once a vulnerability is
scored and published, it often lacks sufficient
information regarding reproduction steps,
detailed mitigation strategies, or methods to
determine if impacted endpoints are already
compromised. Furthermore, CVSS scores for a
given CVE vary widely depending on the source.
Cyber defense teams receive a CVSS (Common
Vulnerability Scoring System) score (0-10), CPE
(Common Platform Enumeration) information,
and a CVSS vector that incorporates multiple
factors intended to aid in prioritization efforts.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

RUN-TIME INTELLIGENCE:

Moving Beyond Static
Vulnerability Management

To understand the benefits of dynamic intelligence versus statically acquired
telemetry, it is important to understand what each approach delivers and how
the data is gathered.

Deploy agent

Collect inventory of
installed applications +
versions

Cross reference installed
versions (CPE) against
published vulnerabilities

Notify administrators
when matches occur
and include links to NVD,
MITRE, and/or vendor
websites for vulnerability
information

If available: vendor may
provide additional scoring
or research to assist in
patch prioritization (often
as a premium service)

Repeat process cyclically

Deploy agent

Collect inventory of installed applications +
versions

Begin monitoring running applications to
establish functionality baseline

Take into account configurations and other
factors specific to an organization’s IT
environment

Perform initial risk assessment based on
baseline data

Group functionality for each application into
defined risk categories and score based on
criticality to aid in mitigation prioritization

Provide compensating control recommendations
and specific process/filename details for
identified risks (e.g., which process is performing
the risky behavior)

Continuously monitor for changes to the
established baseline for each application

When utilizing dynamic data, organizations can identify risky behavior before CVEs are published
by evaluating actual functionality rather than relying on traditional risk categorization methods.
Additionally, by focusing data collection on actively running applications rather than historical
installations, organizations can develop more accurate asset inventories and gain better visibility
into their true attack surface.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

FROM CLASSIFICATION TO CONTEXT:

The CVE-CWE Disconnect

One of the more common methods for categorizing a weakness that may lead to a vulnerability is the
Common Weakness Enumeration (CWE) list. According to the CWE site', a “weakness” is a condition
in software, firmware, hardware, or a service component that, under certain circumstances, could
contribute to the introduction of vulnerabilities.

25 CWEs

21,619 CVEs

285

CISA KEVs

According to Vulncheck? the top 25 CWEs listed
by MITRE? represented 21,619 total CVEs, with 285
being listed as Known Exploited Vulnerabilities
(KEV) by CISA.

The fundamental disconnect lies in how organizations use these classifications: CWEs describe
general weakness categories, while CVEs represent specific vulnerability instances. This disconnect
means security programs often lack the context to understand which CWE patterns pose the
greatest actual risk in their specific environments.

One of these top twenty-five is CWE-502 (Deserialization of Untrusted Data), also tracked as
CAPEC-586 (Common Attack Pattern Enumeration and Classification) with a typical severity of HIGH*.
An example CVE that lists CWE-502 is CVE-2022-31199, a vulnerability impacting Netwrix Auditor
that made its way onto the CISA KEV list on July 11, 2023—seven months after its initial publication
on November 7, 2022. This vulnerability allowed for remote code execution via an unsecured
remoting port, leading to SYSTEM level privileges. In many organizations, this application would
not be patched immediately due to downtime impact, potential change freezes (often December to
January), and because many teams assume that non-public-facing applications are not immediate
concerns.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE 7

FROM CLASSIFICATION TO CONTEXT: THE CVE-CWE DISCONNECT

Due to the nature of this application, its installation location, and the level of access required for
its operation, a target organization relying on CISA KEV as its primary basis for patch prioritization
would have remained completely exposed for 11 months.

This represents just one CVE of 40,287 published in 2024%—of which 1,250 had a base CVSS score
of 8 or higher. The number of CVEs continues to grow, current prioritization methods fail to scale,
and attack surfaces persistently expand.

A DOES YOUR TEAM KNOW HOW TO PRIORITIZE ALL THIS?

50000

40000

) - ' |
o] -

2015 2018 2017 2018 2019 2020 2021 2022 2023 2024

NUMBER OF CVES

This is just one CVE of 40,287 published in 2024° - of those, 1250 had a base CVSS score of 8 or higher. The number of
CVEs is not going down, the current prioritization methods do not scale, but the attack surface continues to grow.

' https://cwe.mitre.org/about/index.html

2 https://vulncheck.com/blog/cwe-top-25-2024

3 https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
4 https://capec.mitre.org/data/definitions/586.html

5 https://www.cvedetails.com/browse-by-date.php

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE 8

SOFTWARE APPROVAL THEATER:

The Dangerous lllusion
of Security

When applications enter the Third-Party Risk Management (TPRM) process for approval within an
organization’s environment, there is often insufficient information to make truly informed decisions.
The TPRM process, sometimes supported by vulnerability management teams for software
assessments, heavily relies on vendor questionnaires, Gartner reports, or occasionally a Software Bill
of Materials (SBOM) provided by the vendor. Vendor questionnaires create a false sense of security
by incorrectly assuming that vendors with mature cybersecurity programs also excel at application
security. Organizations have minimal visibility into whether vendors prioritize application security
or are simply proficient at completing forms. This flawed premise allows software to be deployed
throughout the organization without proper due diligence, often earning the coveted “Approved
Software” designation.

Similarly, open-source solutions under consideration for adoption frequently undergo security
architecture reviews based primarily on documentation and CVEs in referenced libraries. However,
many of these identified CVEs may not actually be exposed when the code runs in production,
leading to both false positives that waste resources and false negatives that miss genuine risks
based on actual runtime behavior.

In a hypothetical world of unlimited resources, organizations would have their Red Team and Cyber
Defense Team conduct comprehensive “purple team” exercises for all software to understand
exploitable risks and develop targeted mitigations. However, the reality of resource constraints
and the sheer volume of software being deployed makes this approach impractical for most
organizations, leaving them to rely on far less effective methods.

Once the TPRM process or open-source solution review concludes with application approval, the
endpoint management team focuses primarily on functionality and deployment prerequisites,
assuming thorough due diligence preceded approval. Upon this uncertain foundation, deployment
proceeds, further expanding the organization’s attack surface.

Subsequently, the vulnerability management program becomes responsible for ensuring patching
efficacy and recommending or implementing mitigating controls when vulnerabilities lack
immediate patches. Their success depends on knowing which assets have vulnerable versions and
having access to published CVEs or other vulnerability disclosures. More mature organizations may
establish internal scoring criteria to assess actual criticality relative to their environment, rather
than relying solely on CVE Numbering Authorities (CNA) or vendor-defined metrics.

This process fundamentally assumes that all software on company assets has undergone TPRM
evaluation, end users lack local admin privileges, no ad hoc software installations occur, and the
cyber defense team maintains an accurate inventory of all applications with risk categorization

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

capabilities. Few, if any, companies meet these baseline assumptions. Even those that do rely on
reactive, static, point-in-time data rather than dynamic information.

So how do we address this problem with commercial software assessment when current methods
are failing?

Enter dynamic data collection...

.o mam——

. +88 & 908 98 08 L

SOFTWARE BEHAVIOR ANALYSIS:

A Window into True
Application Risk

The primary distinction between current solutions and dynamic collection lies in the ability to analyze
an application’s behavior, highlight specific risks based on observed activities, and monitor deviations
from an established functionality baseline. Dynamic collection also evaluates how applications are
deployed, configured, and interact with secondary and external services. To truly assess the risks
associated with third-party compromise, organizations must also consider undocumented third-
party interactions that applications depend on for functionality.

Even when running applications within dynamic detonation environments (sandboxes), observations
are limited to brief time windows. These limited snapshots cannot compare to the insights
gained from monitoring an application’s behavior over extended periods in actual deployment
environments. Furthermore, sandboxes are primarily designed to detect malicious behavior rather
than comprehensively assess operational risk.

Armed with dynamically gathered information and recommendations, organizations become
equipped to mitigate risky behavior when deployed software exceeds internally defined risk
thresholds. Additionally, when high-risk vulnerabilities emerge, security programs can quickly
identify which assets are running impacted versions and create targeted detection mechanisms to
hunt for potential exploitation activity.

With this high-level overview of dynamic collection in mind, let us revisit our previously mentioned
workflow involving the TPRM, Vulnerability, and Cyber Defense teams.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

BEHAVIOR-DRIVEN SOFTWARE EVALUATION:

Reimagining the Software
Assessment Process

When a new onboarding request enters the TPRM process or when evaluating open-source
solutions, the user or team requesting the software first evaluates it for functionality with a dynamic
data collection sensor installed on their test system. During this pre-determined learning period,
the application runs in an environment that mirrors the organization’s standard image while being
monitored and its risk profile established. This approach produces the type of deep insights at scale
that would otherwise only be possible through resource-intensive purple team exercises, effectively
democratizing advanced security analysis for all software evaluations.

With comprehensive behavioral data collected, vulnerability management and security architecture
teams review identified risks and make informed decisions about deploying the application to
wider end-user systems. If the application is approved but requires mitigations before broader
deployment, these recommendations can be delivered to the endpoint team. Additionally, if the
security architecture determines that the application would require a security exception, they can
now effectively articulate specific risks to potential risk owners.

Once deployed, the “approved” application’s established baseline from the learning period can be
shared with cyber defense teams, enabling them to monitor for potentially risky functionality changes
and create detection mechanisms for any deviations from the baseline. When vulnerabilities requiring
immediate patching are published, the vulnerability management team can quickly determine which
assets are running the impacted versions.

Furthermore, the TPRM process and open-source solution reviews can now include meaningful
annual evaluations to determine if any software has experienced an increase in its risk profile. If risk
profiles have risen, security teams can identify the earliest versions where changes occurred and
initiate formal inquiries with vendors requesting clarification.

While these steps assume standardized application onboarding, many organizations struggle
with non-standard deployments. Even in these scenarios, dynamic collection and analysis enables
security programs to monitor any installed application with risky functionality and take appropriate
action.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

FROM INVENTORY TO INSIGHTS:

Dynamic Data’'s Expanded
Capabilities

Taking a step back from the standard use case of patching prioritization, dynamic
data collection enables several additional valuable capabilities:

ACCURATE ASSET INVENTORY

Resolve the persistent challenge of identifying which applications and versions
are actually installed and running on computers within your environment.

HOST RISK-BASED PRIORITIZATION

Develop host-specific risk scoring that extends beyond installed applications,
associated published CVEs, and OS-specific configurations. Administrators can
implement segmentation controls based on which computers run higher-risk
software.

CVE PRIORITIZATION

Transform vulnerability management by prioritizing patching efforts based on the
observed runtime behavior of software, including behavior that would amplify
the blast radius of exploitation. This context-aware approach ensures critical
vulnerabilities in applications with high-risk behaviors receive attention before
less impactful vulnerabilities, even when the latter have higher CVSS scores.

INCIDENT RESPONSE ENHANCEMENT

Empower incident response (IR) teams with detailed baseline knowledge of normal
application behavior, enabling them to quickly identify and respond to exploitation
attempts. When software behaves outside its established runtime profile, IR teams
can pinpoint exactly what functionality is being abused, accelerate root cause
analysis, and implement targeted containment strategies that minimize business
disruption.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

13

FROM INVENTORY TO INSIGHTS: DYNAMIC DATA'S EXPANDED CAPABILITIES

FUNCTIONALITY-BASED THREAT HUNTING

Move beyond searching for application names or process identifiers by hunting
for specific functionalities deemed risky or suspicious within your environment,
regardless of the application performing them.

ANNUAL BASELINE REVIEWS FOR APPROVED SOFTWARE

Systematically review installed applications yearly to maintain your approved
software list, remove unauthorized software, or proactively implement safeguards
based on evidence of new functionality in previously approved applications.

TREND ANALYSIS

While static data provides a snapshot of your current environment and installed
applications, dynamic intelligence allows you to compare your present state
against historical baselines, revealing important trends and changes over time.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

14

W|

SPEKTION RUNTIME
INTELLIGENCE:

Transforming
Software
Behavior into
Security Insights

EXAMPLE: Popular Remote Monitoring
& Management (RMM) Software

To better understand how dynamic data collection
can help identify and mitigate insecure applications in
your environment, let’'s examine a widely used remote
monitoring and management (RMM) application.

SPEKTION RUNTIME INTELLIGENCE: TRANSFORMING SOFTWARE BEHAVIOR INTO SECURITY INSIGHTS

Dynamic collection from an endpoint running this software identified the following critical and high
severity risks:

UNQUOTED SERVICE PATH DETECTION

An attacker could place a malicious executable in the path that gets executed
before the intended service.

HOST NAME VERIFICATION DISABLED

Exposes the application to potential Man-in-the-Middle (MitM) attacks and other
security risks.

DEBUG MESSAGES ENABLED

Can reveal sensitive application logic and data.

READ-WRITE-EXECUTE MEMORY PAGE

By allowing a memory page to be both writable and executable, an attacker could
write malicious code into the page and then execute it.

KEYSTROKE CAPTURE USING THE WINDOWS API

Capturing keystrokes can lead to the unauthorized collection and potential misuse
of sensitive information.

PROCESS MEMORY DUMPING

Can lead to the exposure of sensitive data, cryptographic keys, or personal
information.

IR IR IR IR IR IR,

WINDOWS COMMAND SHELL

Executing processes through command interpreters, such as CMD.exe, with
elevated privileges can lead to the execution of malicious commands with system-
level access, significantly amplifying the potential impact.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

16

SPEKTION RUNTIME INTELLIGENCE: TRANSFORMING SOFTWARE BEHAVIOR INTO SECURITY INSIGHTS

When viewed through the lens of functionality versus the industry’s current method of waiting for a
CVE to be published, it becomes clear that even applications not traditionally viewed as risky could
lead to potential compromise. The assessment of risk is further elevated when noting that some
functionality, like Windows Command Shell utilization, occurs with elevated privileges, creating an
even greater attack vector.

LSASS Process Memory Read Access Risk

One of the riskier access levels utilized by many applications and identifiable with runtime data
analysis is LSASS process memory read access. While legitimate use cases exist that necessitate this
level of access, organizations must rely on developer-implemented protections to prevent misuse
by malicious actors seeking sensitive authentication data, saved browser passwords, encryption
keys, and other cryptographic secrets.

To emphasize the benefits of dynamic telemetry, consider this brief mental exercise: Which
applications deployed to your endpoints today have LSASS Process Memory Read Access? Of those
applications, which ones have compensating controls to ensure they only perform their intended
core functions? As a bonus question, what are the legitimate core functions of these applications
that require reading LSASS process memory?

With current industry tooling, you're likely struggling with the first question. Even if you could
compile that initial list, how would you accurately determine which applications are legitimate and
establish their baseline functionality? Simply put, you cannot—you need dynamic data that at-scale
and accessible.

Dynamic, runtime collection of
software and potential for risks
based on functionality

Point-in-time data collection

List of all installed applications

COMPETITOR

List of all installed application

Ability to determine if a given grouped by those that are active

software version is installed

Ability to determine if a given
software is installed and monitor for
changes in how a given software
functions version to version and
over time

Evidence path, or how they
detected a given version is installed

Evidence path, recommended
mitigation controls, dynamic
functionality association to a
specific process name/path

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE 17

Escaping the Vulnherability
Management Treadmill

Throughout this report, we have outlined how static solutions to dynamic problems
will never result in a hardened attack surface. At best, current approaches provide
scoring and parsing methods that are not specific to individual organizations,
and at worst, they give a false sense of security that leads to compromise. These
approaches also fundamentally assume that all software is in scope for CVE
research and publication, which is far from reality. Custom-developed applications,
open-source projects with limited community support, and rapidly evolving software
often fall outside the scope of traditional CVE monitoring, creating significant blind
spots in security posture.

Dynamic data collection reveals how applications function in your specific
environment—not someone else’'s—leading to informed risk assessments and
targeted mitigations, regardless of whether the software is covered by formal
vulnerability research.

This leaves us with the question: Are we truly doing our best, or are we settling for
current solutions because “that’s how we’ve always done it"?

Glossary of Terms

CVSS scoring, vectors, and exploitability scores are inherently subjective. It is not uncommon to see one source
classify an Attack Vector (AV) as local, while another lists the same CVE as network, with both assigning different
scores to the identical vulnerability. This scoring inconsistency becomes further complicated when organiza-
tions rely on third-party tools that attempt to score CVEs independently.

The Exploit Prediction Scoring System (EPSS) attempts to help teams prioritize patching by using relevant vul-
nerability data to determine the probability of a given CVE being exploited. While the logic and methodology are
sound, it remains a probability model that is often overprioritized when determining which vulnerabilities pose
the greatest risk. Furthermore, EPSS does not consider the likelihood of exploitation within specific environ-
ments, as the model is trained on publicly available data and may reference scoring metrics that do not align
with internal methodologies.

The Software Bill of Materials (SBOM) is an inventory of elements comprising software components. With the
introduction of NIST SP 800-218 and CISA's push for SBOM adoption, it is rapidly becoming a new standard for
development teams. However, from a defense perspective, its use cases are limited primarily to determining if
applications contain vulnerable components. Since SBOM only lists components used by an application—not
how each component is implemented—it often leads to wasted mitigation efforts on components that are not
actually vulnerable. The Vulnerability Exploitability eXchange (VEX) concept, which provides developer attestation
regarding specific known vulnerabilities, attempts to address this SBOM reliability issue.

Unfortunately, SBOM and VEX implementations are not scalable for most cyber defense organizations to
request/parse or for development teams to produce. While automated SBOM creation can be integrated into
development pipelines, the more valuable hardening resource (VEX) would be exceedingly difficult to scale given
the high volume of CVEs generated annually.

All methodologies outlined above represent lagging, reactive risk indicators that rely either on public data or
static, point-in-time assessments that fail to evaluate an application’s true risk. They are founded on three core
fallacies: complete knowledge of all installed applications across all endpoints, accuracy and organizational
relevance of scoring data, and the sufficiency of static data for risk mitigation. Continued reliance on these
methods prevents vulnerability management programs from achieving proactive hardening, instead trapping
them in a Sisyphean cycle of reactivity.

TRANSFORMING VULNERABILITY MANAGEMENT WITH RUNTIME INTELLIGENCE

Spektion’s Vision for
Software Security

At Spektion, we’re reshaping how organizations approach software
security. By combining cutting-edge technology with deep expertise,
we’re creating a future where proactive risk management is standard
practice. Our mission is to continually evolve our solutions to meet the
challenges of tomorrow’s threat landscape, ensuring our customers
remain a step ahead in securing their digital environments.

Our team unites security experts with backgrounds as leaders of
global enterprise security programs, offensive security practitioners,
military cyber operations specialists, and intelligence operations
professionals. Having led and supported enterprise security programs
at the highest levels, we understand the real-world obstacles
organizations face from both offensive and defensive perspectives.

We chose to address a critically underserved yet fundamental
challenge in cybersecurity: managing risks within the software
supply chain. We recognized that this gap is at the root of numerous
security incidents and drives many of the complex vulnerability
management and third-party risk issues that organizations face.
Despite the critical importance of this challenge, solutions have been
lacking. Leveraging our experience.managing this problem and our
expertise in how it is exploited, we committed to closing this gap for
our customers.

4 spektion

Learn More at spektion.com

